Fractal-like behaviour of the BCC/FCC phase separation in the iron-gold alloys.
نویسندگان
چکیده
Iron-gold alloys with compositions Fe(70)Au(30) and Fe(50)Au(50) were prepared by arc melting. The alloys were investigated by means of the high-resolution scanning electron microscopy (SEM-FEG) in the as-cast state and upon annealing in two steps, i.e. at 250 degrees C for 24 h and subsequently at 500 degrees C for 48 h. The alloys were composed of two phases, i.e. a BCC phase rich in iron and a FCC phase rich in gold. The single-phase regions have equivalent diameter of about 50 nm. SEM images show self-similar structure for the spatial distribution of the above phases on scales ranging from about 1 mm till about 100 nm. The roughness of the images has been used to estimate a fractal dimension of the phase mixture. For larger scales of the as-cast samples one finds fractal dimension of about 1.7 for Fe(70)Au(30) composition, i.e. very close to the dimension of typical diffusion limited aggregation (DLA) fractals. For annealed samples, dimension 1.1 was found.
منابع مشابه
Ginzburg-Landau-type multiphase field model for competing fcc and bcc nucleation.
We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the...
متن کاملElectrodeposited Iron Group Thin-Film Alloys Structure-Property Relationships
Various iron group alloys have been electrodeposited and evaluated for properties including corrosion resistance, microstructure, electrical resistivity, magnetoresistance and other magnetic properties. Corrosion resistance depends on deposit composition and microstructure, which are controlled by solution composition and deposition variables. Maximum corrosion resistance was observed for 50Ni5...
متن کاملA new nanoscale metastable iron phase in carbon steels
Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investi...
متن کاملTwo-phase coexistence in Fe–Ni alloys synthesized by ball milling
We used mechanical alloying with a Spex 8000 mixer/mill to synthesize a series of Fe1002xNix alloys from x50 to x549. The Spex mill was modified so that it could also operate at a reduced milling intensity, and we compared the alloys synthesized after long times with the normal and reduced milling intensities. X-ray diffractometry and Mössbauer spectrometry were used to measure the volume fract...
متن کاملThe Magnetic Aspects of the γ-α and γ- Martensitic Transformations in Fe-Mn Alloys
Fe,,Mn, alloys undergo fcc-bcc (y-a) and fcc-hcp (y-E) transformations for about 0<x<10 at % and 15<x<30 at% respectively. The product phase in the region 10<x<15 at. % is mixed a+€ and ~ + y . The y-a transformation in Fe-Mn is similar to that in Fe-rich Fe-Ni alloys where the transformation takes place between a high-temperature dense fcc structure and a lowtemperature more open bcc structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microscopy
دوره 237 3 شماره
صفحات -
تاریخ انتشار 2010